Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1.

نویسندگان

  • Xinguo Qian
  • Wenbo Hou
  • Li Zhengang
  • Bingdong Sha
چکیده

Heat-shock protein 40 (Hsp40) enables Hsp70 to play critical roles in a number of cellular processes, such as protein folding, assembly, degradation and translocation in vivo. Hsp40 recognizes and binds non-native polypeptides and delivers them to Hsp70. Then Hsp40 stimulates the ATPase activity of Hsp70 to fold the polypeptides. By using yeast Hsp40 Sis1 and yeast Hsp70 Ssa1 as our model proteins, we found that the Sis1 peptide-binding fragment interacts directly with the full-length Ssa1 in vitro. Further studies showed that the C-terminal lid domain of Ssa1 could interact with Sis1 peptide-binding domain physically in vitro. The Sis1 peptide-binding fragment forms a stable complex with the Ssa1 C-terminal lid domain in solution. The interactions between these two proteins appear to be charge-charge interactions because high-ionic-strength buffer can dissociate the complex. Further mapping studies showed that the Sis1 peptide-binding fragment binds the extreme C-terminal 15 amino acid residues of Ssa1. A flexible glycine-rich region is followed by these 15 residues in the Ssa1 primary sequence. Atomic force microscopy of the Sis1-Ssa1 complex showed that only one end of the Ssa1 lid domain binds the Sis1 peptide-binding-fragment dimer at the upper level of the huge groove within the Sis1 dimer. Based on the data, we propose an "anchoring and docking" model to illustrate the mechanisms by which Hsp40 interacts with Hsp70 and delivers the non-native polypeptide to Hsp70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting

Ubiquitin accumulation in amyloid plaques is a pathological marker observed in the vast majority of neurodegenerative diseases, yet ubiquitin function in these inclusions is controversial. It has been suggested that ubiquitylated proteins are directed to inclusion bodies under stress conditions, when both chaperone-mediated refolding and proteasomal degradation are compromised or overwhelmed. A...

متن کامل

Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40.

Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and protein-folding activity. Using chemical screens, ...

متن کامل

Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+].

Sis1 and Ydj1, functionally distinct heat shock protein (Hsp)40 molecular chaperones of the yeast cytosol, are homologs of Hdj1 and Hdj2 of mammalian cells, respectively. Sis1 is necessary for propagation of the Saccharomyces cerevisiae prion [RNQ(+)]; Ydj1 is not. The ability to function in [RNQ(+)] maintenance has been conserved, because Hdj1 can function to maintain Rnq1 in an aggregated for...

متن کامل

The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes.

The 70-kDa heat shock proteins are molecular chaperones that participate in a variety of cellular functions. This chaperone function is stimulated by interaction with hsp40 proteins. The Saccharomyces cerevisiae gene encoding the essential hsp40 homologue, SIS1, appears to function in translation initiation. Mutations in ribosomal protein L39 (rpl39) complement loss-of-function mutations in SIS...

متن کامل

Hsp40s Specify Functions of Hsp104 and Hsp90 Protein Chaperone Machines

Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 361 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002